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Subcell FDTD Modeling of Electrically Thin
Dispersive Layers

Mikko K. Kéarkkainen

Abstract—A novel techniquefor treatingelectrically thin disper-
sive layerswith the finite-difference time-domain (FDTD) method
is introduced. The proposed model is based on the subcell tech-
nique, where the constitutive relations are locally averaged in the
FDTD grid. The most significant feature of the proposed model
isits ability to model rather complicated dispersive layers having
multiple pole pairs. The model is validated with several numer-
ical examplesmaking comparison with theexact results. Both time-
and freguency-domain validations are presented.

Index Terms—Dispersive layers, electrically thin layers, finite
difference time domain (FDTD).

I. INTRODUCTION

ANY microwave devices contain electricaly thin

layers. Therefore, the numerica modeling of such
structures is of interest. The finite-difference time-domain
(FDTD) method has been widely accepted as an efficient tool
for the accurate solving of a great variety of electromagnetic
problems. The present problem, modeling of electrically thin
dispersive layers, may be solved basically in the following
three ways:

1) with direct and fine enough discretization of the fields

inside the layer;

2) using the surface impedance boundary conditions

(SIBCs);

3) by locally modifying the update equations to account for

the layer.

The direct discretization cannot be classified as an efficient
method because it may require very dense mesh inside the
layer, and unless a nonuniform mesh is used in the FDTD
lattice, it results in a dramatic increase of the computational
burden. The surface impedance approach is very efficient,
but extremely complicated when modeling dispersive layers.
The surface impedance method has been usualy employed
when modeling perfect electric conductor (PEC) backed
dielectric and conductive coatings [1]-{3]. The application of
the SIBC approach for more general dispersive layers, where
the metal backing is not present, leads to transition conditions,
which are also very complicated to implement into the FDTD
method without making approximations. Penney et al. have
used the SIBC technique for coated targets by expressing the
frequency-domain surface impedance function as a sum of
basisfunctionsin[4]. The approximation israther coarse unless
many basis functions are used. A separate routine for finding
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the optimal coefficients for the basis functions is also needed.
The first order Leontovich SIBC was used in [4].

The subcell technique is clearly also an efficient approach
since acoarse mesh may be used, and the memory requirements
remain amost unchanged after the insertion of the layer pro-
vided that the layer fillsonly asmall amount of the computation
space. Some models for dielectric and conductive layers based
on subcell techniques can be found in the literature. Tirkas and
Demarest proposed amodel for thin dielectriclayersin[5]. Mal-
oney and Smith took a slightly different approach in [6] when
modeling dielectric and conductive layers. Some other models
have al so been suggested [7]-{9], but they have been verified by
Maloney and Smith in [10] to be less accurate than the models
by Maloney and Smith and Tirkas and Demarest. A disadvan-
tage of the subcell method is its inability to model electrically
thick layers. In such situations, one should resort to SIBCs or
to direct discretization methods. A direct discretization algo-
rithm has been presented by Young in [11]. Notice that the pre-
vious subcell techniques[5]-{9] are not applicableto dispersive
layers.

Inthis paper, weformulate anew subcell technique, which al-
lows modeling quite general dispersive layers, possibly having
multiple pole pairs. The proposed model reduces to the model
by Maloney and Smith in the case of dielectric and conductive
layers. The new model isformulated in the general three-dimen-
sional (3-D) case in Section Il, and validation studies are con-
ducted with one-dimensional (1-D) and two-dimensional (2-D)
FDTD programs in Section Il both in time and frequency do-
mains. Quite good agreement with the analytical results is ob-
served.

Il. SUBCELL TECHNIQUE FOR DISPERSIVE LAYERS

The basic idea of the modéd is quite simple: we will average
the electric and magnetic flux densities so that they will simulate
the presence of athin dispersive layer. The layer is assumed to
be located in free space, although this need not necessarily be
the case. The field components both tangential and normal to
the layer will be affected by the model. Consider deriving the
update equations for the tangential magnetic-field components
in the vicinity of adispersive layer of thickness d and with the
frequency-dependent isotropic permeability

m,k
w + s :
l/L( ) l/Lli <I’LOO — 2nl7k ,-yn/7k ]2 jsnl’k ) (1)

where P isthe number of pole pairsand the subscript & refersto
the kth pole pair. The subscript . refers to the magnetic layer.
An appropriate choice of the parametersin the above expression
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Fig.1. (a) Sliceof the FDTD latticein the zy-plane. A special update scheme
is developed for the field components denoted with nonfilled objects. Extra
variables areintroduced for the field components normal to and inside the layer.
(b) Problem geometry in a 1-D problem. The reflection of a z-polarized pulse
from a coated ideal conductor is studied.

allows us to obtain alayer of Lorentz, Debye, or Drude type as
special cases. Similarly, the expression for the permittivity is
taken to be of the form

r /3
e,k
= o0 + : y 2
e(w) €0 <6 kE=1 wge,k _ ’Ye,kWQ +j(se,,kw> ( )

with analogous definitions of the parameters as above. Let the
layer partialy fill asingle planeof FDTD cellsinthe3-D FDTD
lattice. A dlice of the FDTD lattice in zy-plane is shown in
Fig. 1(a). The geometry of a 1-D interface problem, which is
considered later, is shown in Fig. 1(b). If the volume fraction
occupied by the layer is «, then we may calculate the averaged
magnetic flux density inside the cells containing the dispersive
layer according t0 B = ap(w)Hiayer + (1 — @)ptoHree space
with 0 < « < 1. Using the magnetic susceptibility x,, »{(w)
associated with the kth pole pair, defined as

Brn k
m,k = : s 3
Xk ) = e T )
we obtain the equation
r
B = oo | oo + 3 Xmi(w)| H+ (1= a)ueH.  (4)
k=1

Asan example, let us derive the update equation for the »z-com-
ponent of the tangential magnetic field [see Fig. 1(a)]. The mag-
netization M ;, and magnetic field H . are related through the
magnetic susceptibility according to

Mz,k = NOan,k(w)Hz (5)
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and the magnetic current K, ; may be expressed with the mag-
netization M. ;. as

Kz,k = jWMz,k“ (6)

From the z-component of the Faraday’ slaw, we obtain the equa-
tion
r
=—u. - (VXE)—a) K.,
k=1
(7

The dot product of the curl and the unit vector u. picks the
z-component from the curl. The discrete form of (7) reads

OH,
at

[1+ a(peo — 1)] 1o

n+1/2
Z[i,j+1/2,k+1/2

o n—1/2

= H.l; 1720412
At

— (VXE).|" 4
[1 + a(ﬂoo _ 1)] 1o J+1/2,k+1/2

alt "

- Z KZ,k[Zj-i—l/Q,k-i—l/Q' 8

[1 + (oo — 1)] Ho 3

Using the definitions for the magnetization M. ;. in (5) and for
the magnetic current K. ;. in (6), we obtain the auxiliary equa-
tion

wgnl7kMz,k +jw’77n,sz,k + 6nl,sz,k = NOﬁnl,kHz- (9)

The update equations for the auxiliary variables K, ; and M.,
for any k& can now be obtained by discretizing (9) and (6) as
follows:

2’7771,’&‘ - 6nl,kAt

+1 B :
Kz,k[?,j+1/2,k+1/2 _ml(z’klmﬂ/zkﬂm
_2oBm At /2
29m ke + O g AT/ 2k41/2
2
i MM [n+1/2
2o+ O o 1/ 04172
3/2 1/2
MZ:’“[”JF 4 _Mz,k[n+ /

i1/ 2,k+1/2 = i 41/2,k+1/2

+ AtK, (10)

:klz;ﬁl/?,k+1/2'
Notice that in the limit « — 0 with u., = 1, the coupling
between H_. and auxiliary variables K. ; and M. ;. disappears,
and we obtain the usual update equation for the magnetic field
H_ infree space, asrequired for consistency of the model. Also,
if B = 0foral k and e = 1, implying that the auxiliary
variables are zero, leads to the usual update equations in free
space.

The quantity 1 + «(j.. — 1) can be regarded as an averaged
relative permeability in the limit w — oo. To get the update
equation for the normal component of the magnetic field H,,,
which is inside the layer, we need to replace 1 + a(pieo — 1)
with pi, and set & = 1in(8) and (10) with appropriate changes
in the subscripts.

The derivation of the update equations for the electric-field
components in the case of alayer in free space is quite analo-
gous and is not shown here. However, in the case when metal is
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coated with the layer, we must account for the fact that the tan-
gential electric field decays to zero in the vicinity of the ideal
conductor. This situation is most conveniently described in a
1-D case. Suppose that there is an ideally conducting wall at
x = 0 [see Fig. 1(b)] and let the coating on the wall have a
thickness d. Let the electric field be polarized along the z-axis.
The PEC wall implies that we have E. |, = 0 al thetime. The
tangential magnetic field at a half-cell away from the PEC wall
can be updated as described above. However, the simple aver-
aging of the electric flux density D, in the vicinity of the PEC
wall is not a good approach.

To demonstrate how the PEC wall is accounted for, consider
deriving the update equation for the field component £_|; in
the immediate vicinity of the coating. Usually, the fields are
assumed to be piecewise linear across each FDTD cell. Hence,
wemakeavery natural assumption that the electric field behaves
linearly intherange Az /2 < x < 3Axz/2 with the slope chosen
so that alinear extrapolationto x = O wouldyield azero electric
field. Thus, we assume that

x

Az

Next, we calculate the spatially averaged electric flux density
near the wall and use it to deduce the effective permittivity of
the coating in the limit w — oo. Integrating from = = Az/2
to x = 3Ax/2, we obtain

Ez(x) Ezll- (11)

1 3Az/2 T
D |y =—— w—0o —Lk. d
j Az /Am/Q “ (z) Az I de

9 — e n d?
=¢
0 8 2Ax2

26067‘,o<>,ave(d7 EOO)Ezll'

(€0 — 1)| E|1
(12)

Thisrelation is utilized when updating the electric field near the
boundary. The consistency requirements are easy to check. If
too = 1, Wehavee, o ave = 1 regardless of the layer thickness
dandif d =0, weobtain ¢, o ave = 1 fOr e. = 1. Notice that
the above derivation isonly necessary if thelayer thicknessd >
Az /2. For smaller thicknesses, magnetic properties of the layer
areknown to dominate the shape of thereflected waveform. This
fact can be easily seen from the Leontovich SIBC, which takes
the form

E. = jup(w)dH, (13)

if the tangent function in theimpedance Z,(w) = jntan(kd) is
approximated with itsargument tan(kd) = kd. Hence, we may
USe €. o ave = 1if d < Az/2 and the wavelength inside the
layer isnot very small. In the following section, we will demon-
strate a pulse reflection from awall coated with a layer having
arather complicated frequency dependence of the material pa
rameters.

It was observed from numerical experimentsthat the conduc-
tivity of the layer may be approximated by simple averaging
according to o,,. = «o, where « is the volume fraction of the
layer occupying the adjacent cellsto E.|;. Thus, for a coating
of thickness d and conductivity ¢, we obtain

d

AL 0. (14

Tave =
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Introducing the electric polarization current J and polarization
P, we obtain the update equation for the electric field £, |; next
to the metal wall in the 1-D case

E n+1 _261‘,oo,ave60 — Cave At
=
261‘,oo,ave60 + aaveAt
n 2At
Az (261’,oo,ave60 + JaveAt)

n+1/2 n+1/2
’ (Hy[3/2 /2 - Hy[1/2 / )

E.lt

r
2aAt
- GOl (9)
k=1

261’,oo,ave60 + Cave

where the magnetic field H, | /» in updated as described above.
In (15), we use (12) and (14) for the averaged permittivity
and conductivity. The variables J.; and P.; are updated
completely analogously to K. 3 and M. x in (10).

I11. VALIDATION OF THE PROPOSED MODEL
A. Pulse Reflection From a Coated |deal Conductor

We start with a problem of a TE-polarized pulse reflecting
from ametal wall coated with a dispersive layer. We consider a
fixed set of material parameters of the coating, and calcul ate the
numerical reflection coefficients and time-domain waveforms
varying the thickness of the coating. The numerical results are
then compared to the exact results.

1) Frequency-Domain Validation: Consider asanexamplea
layer of amaterial whose relative permittivity and permeability
areshowninFig. 2. The parameters are of the Lorentz type. The
permittivity has one resonance, while the permeability has two
resonances. The parameters for the permeability are 1o = 1,
Brm1 = 4-10% (rad/s)?, B2 = 1.25-10* (rad/s)?, wpm1 =
2-10" (rad/s), wpm2 = 5- 10" (rad/s), Y1 = Yma2 = 1,
Sm,1 = 5-10° rad/s, and §,,, » = 4-10” rad/s. The permittivity
has parameters e, = 2, f.1 = 9 - 10%° (rad/s)?, wpe1 =
3-10" rad/s, v.1 = 1,and é. ; = 5-10° rad/s. The electrical
conductivity istaken to be zero. The goa hereisto demonstrate
how the thickness of the coating affects the results. Hence, the
above parameters are kept fixed and the thickness of thelayer is
varied in the numerical examples below.

Thefieldsarerecorded one cell away from the PEC boundary.
Noticethat aconfident comparison of the phase of thereflection
coefficient is only possible provided that the thickness of the
layer is close to Az since the electric field on the air—coating
interface is not available unless d = Az. For the magnitude
of the reflection coefficient, thisis not critical in this 1-D case.
Only the magnitude of the reflection coefficient is shown for
thinner coatings.

The magnitude and phase of the reflection coefficient in the
case when d = 0.9Az = 1.8 mm are shown in Fig. 3. Rather
good agreement with the exact resultsis obtained. In Fig. 3(a),
thelargest discrepancy occurs near the second resonance, corre-
sponding to the pole of the permittivity. The jump discontinuity
of the phase of the reflection coefficient in Fig. 3(b) occurs at
dightly smaller frequency than it should. Anyway, every res-
onance of the layer is qualitative very well and quantitatively
rather accurately modeled.
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Fig. 2. (@) Relative permittivity of the coating. (b) Relative permeability of the
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Fig. 3. (&) Magnitude of the reflection coefficient. (b) Phase of the reflection
coefficient. The material parameters as a function of frequency are shown in
Fig. 2.

Next, we decrease the thickness of the coating, choosing d =
0.5Ax = 1 mm. The numerically calculated and exact mag-
nitude of the reflection coefficient as a function of frequency
are shown in Fig. 4(a). It is observed that the resonance asso-
ciated with the permittivity is not so strong, asin Fig. 3(a). In
Fig. 4(a), thereisalmost zero reflection at approximately 8 GHz,
the position of the second resonance of the permeability. Further
decreasing the thickness of the coating, we set d = 0.1Az =
0.2 mm. Theresultispresented in Fig. 4(b). The resonance asso-
ciated to the permittivity near 4.8 GHz has almost been smeared
out, and the dips are not so deep, as in the case of a thicker
coating. Theseresults show that the model works properly when
the thickness of the coating is varied and also verifies that the
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Fig.4. (&) Magnitude of thereflection coefficient. Layer thicknessd = 1 mm.
(b) Magnitude of the reflection coefficient. Layer thicknessd = 0.2 mm.

magnetic properties of the coating dominate when the coating is
electrically very thin. Simulations for smaller damping factors
for permeability were made, and very good agreement was ob-
served even in that case. However, a more redlistic case, where
the maximum real part of the permeability inthe considered fre-
guency range is approximately four, was chosen as anumerical
example.

2) Time-Domain Validation: We show some time-domain
waveforms for the cases considered above. The incident elec-
tric field is a differentiated Gaussian pulse throughout the sim-
ulations. The exact reflected electric field on the interface as a
function of time may be calculated via inverse Fourier trans-
form. Thus, the integral

Ef@z;%/mewTwW”m; (16)

must be evaluated. Thetotal field is obtained by replacing R(w)
with 1 + R{w) in the expression above. The surface impedance
model may be used to calculate the exact reflection coefficient.
In this problem, the PEC-backed coating can be modeled with
a surface impedance of the form

pw)
e(w)

The exact reflection coefficient asafunction of frequency isthen
obtained from

Zy(w) = tan ( c(w)u(w)wd) 17)

Zs(w) — 7o
Zs(w) + 7o

where 79 is the free-space wave impedance. The materia pa-
rameters in Fig. 2 were used to calculate the results in Figs. 5
and 6. The agreement with the exact results is seen to aso be
good inthetime domain. It is seen that the oscillations of there-
flected wave become smaller when the thickness of the coating
is decreased. Thisisnatural since a PEC wall is obtained in the
limit d = 0.

R= (18)
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Fig. 5. (@) Reflected waveform on the boundary. d = 1.8 mm. (b) Total
waveform on the boundary. d = 1.8 mm.
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Fig. 6. (a) Reflected waveform on the boundary. d = 1 mm. (b) Reflected
waveform on the boundary. d = 0.2 mm.

B. Cutoff Frequency of a Loaded Waveguide

First, consider arectangular waveguide with the widths of the
walls equal to ¢ = 30 mm and b = 15 mm. Suppose there is
a thin magnetic layer of thickness d along the broader wall in
the middle of the waveguide. The permeability of the layer is
taken to be of the Lorentz type with a single pole pair. In the
lossless case, we may calculate the exact cutoff frequencies of
this waveguide. Contrary to the previous example, we keep the
thickness of the layer fixed and present a more detailed vali-
dation of the model by varying the material parameters and by
comparing with the exact results. For a single pole-pair 1oss-
less Lorentz layer, there are three parameters to vary, i.e., fico,
Brn = w? and Wom -

pm
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Fig. 7. (&) Cross section of arectangular waveguide with perfectly conducting
walls loaded with a dispersive magnetic layer of the Lorentz type. (b) Cross
section of a rectangular waveguide loaded with a dispersive dielectric layer of
the Lorentz type. The thickness of the layer is exaggerated here.

The problem geometries are shown in Fig. 7. Before numer-
ical examples, we present an analytical expression for the cutoff
frequencies of the waveguide loaded with adispersive layer. For
thefundamental TEy modeto be considered here, thefield dis-
tributions over the small height of the waveguide remain almost
uniform for the components tangential to the layer. Hence, the
approximate expression for the propagation constant (the cross
section of the waveguide is uniform in the x-direction) is appli-
cable [12] asfollows:

(19)

W)«

The cutoff frequency of the TE;y modeis obtained by requiring
that k., = 0 and solving for w. Notice that the approximate ana-
Iytical result doesnot seethe position of thelayer. However, (19)
isvery accurate for the TE;o mode, and reducesto the exact re-
sult for an empty waveguide if e(w) = ¢p and u(w) = po. Rig-
orous derivation of the exact cutoff frequency is omitted here
because it would lead to extremely long and tedious transcen-
dental equationswithout significant increase of accuracy for the
TE19 mode. The cutoff frequency may be calculated in a 2-D
FDTD program using, for instance, a differentiated Gaussian
pulse point excitation inside the waveguide, and recording the
time-domain waveforms at an observation point. The observed
fields are transformed into the frequency domain and the peaks
in the spectrum correspond to the cutoff frequencies of the dif-
ferent modes propagating in the waveguide.

The thickness of the layer is equal to d = 0.25Az =
0.25Ay = 0.375 mm. Hence, we have discretized the cross
section of thewaveguidewith agrid of 20 x 10 FDTD cells. We
first take the permeability to be independent of the frequency
and vary the relative permeability. As expected, the cutoff
frequency of the TE ;¢ modeis seen to decrease with increasing
permeability. The agreement with the analytical resultsisrather
good: the maximum relative error in Fig. 8(a) is approximately
1%.

The results for varying 3, = wgm are shown in Fig. 8(b).
Here, wefix 1o, = 1 and the resonant frequency of the layer is
chosen to be less than the cutoff frequency of the TE;y mode
of an empty waveguide. We have chosen wg,, = 2- 10" rad/s.
The maximum relative error islessthan 1%. InFig. 9(a), wom =
4-10'° rad/s, being larger than the cutoff of an empty waveguide
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Fig. 8. (&) Numerical and analytical cutoff frequencies of the TE;, mode
in the loaded waveguide versus p... (b) Numerical and analytical cutoff
frequencies of the TE, mode in the loaded waveguide versus w,.... The
resonant frequency of the layer is smaller than the cutoff frequency of the
TE.q mode of an empty waveguide.
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Fig. 9. (&) Numerical and analytical cutoff frequencies of the TE,, mode
in the loaded waveguide versus w,,... The resonant frequency of the layer is
larger than the cutoff frequency of the TE,, mode of an empty waveguide.
(b) Numerical and analytical cutoff frequencies of the TE, modein the loaded
waveguide vVersus wo, -

(WeTE, = 7 - 10" rad/s). The result is seen to be clearly
different from that in Fig. 8(b).

In Fig. 9(b), we vary the resonant frequency of the layer
around the cutoff frequency of the unloaded waveguide. We
Set pioo = 1 and wy,, = 7 - 10* rad/s. The cutoff frequency
of the loaded waveguide is seen to converge toward the cutoff
frequency of the empty waveguide when we move away from
the resonant frequency of the layer. More precisely, the cutoff
frequency f.; of the loaded waveguide tends to the cutoff
frequency f.. of the unloaded waveguide with increasing
resonant frequency of the layer. On the other hand, f. ; remains
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Fig. 10. (a) Numerical and analytica cutoff frequencies of the TE, mode
in the loaded waveguide versus €... (b) Numerica and analytical cutoff
frequencies of the TE{, mode in the loaded waveguide versus w,.. The
resonant frequency of the layer is smaller than the cutoff frequency of the
TE o mode in an empty waveguide.

Con-off frequoncics of the TE,_ mode veraus &)

+ Analytical
o T

O~ frequencies of the TE,, made vermia s,
I3 ok B

Cor—off froquency [Gz]

Fig. 11. (a) Numerical and analytica cutoff frequencies of the TE, mode
in the loaded waveguide versus w,.. The resonant frequency of the layer is
larger than the cutoff frequency of the TE,, mode of an empty waveguide.
(b) Numerical and analytical cutoff frequencies of the TE,, mode the loaded
waveguide versus woe .

slightly above f. ,, even if the resonant frequency of the layer
is arbitrarily small.

Asregardsthe tangential components of thefields, theresults
presented thus far confirm that the proposed new model cor-
rectly works. We present one more example, where the normal
componentsare also affected. Weplacealayer withaL orentzian
permittivity (with asingle-pole pair) in the middle of the wave-
guide and calculate the cutoff frequencies versus the parame-
ters of the layer. The shorter wall of the waveguide is now sup-
posed to be 9 mm, and the thickness of the layer is equa to
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1 mm. The layer thickness is increased from the previous ex-
ample to observe asignificant change in the cutoff frequency. It
is seen from the analytical expression that the cutoff frequency
is more sensitive to magnetic layers than to dielectric layers.
The FDTD and analytical results are shown in Figs. 10 and 11.
InFig. 10(8), wp. = 0, and ¢, isvaried. In Fig. 10(b), €. = 1,
woe = 2+ 10" rad/s and w,,. is changed. Thisis also the case
with the results in Fig. 11(a), except that wo, = 4 - 10'° rad/s.
Finaly, in Fig. 11(b), coo = 1, wpe = 7 - 10*° rad/s, and the
resonant frequency wo. of thelayer isvaried. The maximumrel-
ative error of the cutoff frequency is at most 1% in all the cases
considered in this paper.

IV. CONCLUSIONS

A new model for treating electrically thin dispersive layers
and coatings in FDTD simulations was introduced. The model
isbased on an appropriate averaging of the el ectric and magnetic
flux densities and on the use of auxiliary quantities like polar-
ization current and magnetization. The most important feature
of the model is its ability to accurately model dispersive layers
having multiple resonances of material parameters. The model
isapplicablefor electrically thinlayers. A great advantage of the
model isthat we do not have to consider the angle of incidence
of the incident waves because the local nature of the model ac-
counts for oblique incidence as well. With the proposed model,
the use of cumbersome SIBCsfor dispersive layers having mul-
tiple pole pairsisavoided. The proposed model was numerically
verified with a couple of test problems by comparison with the
analytical results. The results given both in time and frequency
domainsindicate rather good accuracy of the model. The model
was found to be suitable for the analysis of waveguides loaded
with a dispersive layer.
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