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Subcell FDTD Modeling of Electrically Thin
Dispersive Layers

Mikko K. Kärkkäinen

Abstract—A novel technique for treating electrically thin disper-
sive layers with the finite-difference time-domain (FDTD) method
is introduced. The proposed model is based on the subcell tech-
nique, where the constitutive relations are locally averaged in the
FDTD grid. The most significant feature of the proposed model
is its ability to model rather complicated dispersive layers having
multiple pole pairs. The model is validated with several numer-
ical examples making comparison with the exact results. Both time-
and frequency-domain validations are presented.

Index Terms—Dispersive layers, electrically thin layers, finite
difference time domain (FDTD).

I. INTRODUCTION

MANY microwave devices contain electrically thin
layers. Therefore, the numerical modeling of such

structures is of interest. The finite-difference time-domain
(FDTD) method has been widely accepted as an efficient tool
for the accurate solving of a great variety of electromagnetic
problems. The present problem, modeling of electrically thin
dispersive layers, may be solved basically in the following
three ways:

1) with direct and fine enough discretization of the fields
inside the layer;

2) using the surface impedance boundary conditions
(SIBCs);

3) by locally modifying the update equations to account for
the layer.

The direct discretization cannot be classified as an efficient
method because it may require very dense mesh inside the
layer, and unless a nonuniform mesh is used in the FDTD
lattice, it results in a dramatic increase of the computational
burden. The surface impedance approach is very efficient,
but extremely complicated when modeling dispersive layers.
The surface impedance method has been usually employed
when modeling perfect electric conductor (PEC) backed
dielectric and conductive coatings [1]–[3]. The application of
the SIBC approach for more general dispersive layers, where
the metal backing is not present, leads to transition conditions,
which are also very complicated to implement into the FDTD
method without making approximations. Penney et al. have
used the SIBC technique for coated targets by expressing the
frequency-domain surface impedance function as a sum of
basis functions in [4]. The approximation is rather coarse unless
many basis functions are used. A separate routine for finding
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the optimal coefficients for the basis functions is also needed.
The first order Leontovich SIBC was used in [4].

The subcell technique is clearly also an efficient approach
since a coarse mesh may be used, and the memory requirements
remain almost unchanged after the insertion of the layer pro-
vided that the layer fills only a small amount of the computation
space. Some models for dielectric and conductive layers based
on subcell techniques can be found in the literature. Tirkas and
Demarest proposed a model for thin dielectric layers in [5]. Mal-
oney and Smith took a slightly different approach in [6] when
modeling dielectric and conductive layers. Some other models
have also been suggested [7]–[9], but they have been verified by
Maloney and Smith in [10] to be less accurate than the models
by Maloney and Smith and Tirkas and Demarest. A disadvan-
tage of the subcell method is its inability to model electrically
thick layers. In such situations, one should resort to SIBCs or
to direct discretization methods. A direct discretization algo-
rithm has been presented by Young in [11]. Notice that the pre-
vious subcell techniques [5]–[9] are not applicable to dispersive
layers.

In this paper, we formulate a new subcell technique, which al-
lows modeling quite general dispersive layers, possibly having
multiple pole pairs. The proposed model reduces to the model
by Maloney and Smith in the case of dielectric and conductive
layers. The new model is formulated in the general three-dimen-
sional (3-D) case in Section II, and validation studies are con-
ducted with one-dimensional (1-D) and two-dimensional (2-D)
FDTD programs in Section III both in time and frequency do-
mains. Quite good agreement with the analytical results is ob-
served.

II. SUBCELL TECHNIQUE FOR DISPERSIVE LAYERS

The basic idea of the model is quite simple: we will average
the electric and magnetic flux densities so that they will simulate
the presence of a thin dispersive layer. The layer is assumed to
be located in free space, although this need not necessarily be
the case. The field components both tangential and normal to
the layer will be affected by the model. Consider deriving the
update equations for the tangential magnetic-field components
in the vicinity of a dispersive layer of thickness and with the
frequency-dependent isotropic permeability

(1)

where is the number of pole pairs and the subscript refers to
the th pole pair. The subscript refers to the magnetic layer.
An appropriate choice of the parameters in the above expression
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(a)

(b)

Fig. 1. (a) Slice of the FDTD lattice in the xy-plane. A special update scheme
is developed for the field components denoted with nonfilled objects. Extra
variables are introduced for the field components normal to and inside the layer.
(b) Problem geometry in a 1-D problem. The reflection of a z-polarized pulse
from a coated ideal conductor is studied.

allows us to obtain a layer of Lorentz, Debye, or Drude type as
special cases. Similarly, the expression for the permittivity is
taken to be of the form

(2)

with analogous definitions of the parameters as above. Let the
layer partially fill a single plane of FDTD cells in the 3-D FDTD
lattice. A slice of the FDTD lattice in -plane is shown in
Fig. 1(a). The geometry of a 1-D interface problem, which is
considered later, is shown in Fig. 1(b). If the volume fraction
occupied by the layer is , then we may calculate the averaged
magnetic flux density inside the cells containing the dispersive
layer according to
with . Using the magnetic susceptibility
associated with the th pole pair, defined as

(3)

we obtain the equation

(4)

As an example, let us derive the update equation for the -com-
ponent of the tangential magnetic field [see Fig. 1(a)]. The mag-
netization and magnetic field are related through the
magnetic susceptibility according to

(5)

and the magnetic current may be expressed with the mag-
netization as

(6)

From the -component of the Faraday’s law, we obtain the equa-
tion

(7)

The dot product of the curl and the unit vector picks the
-component from the curl. The discrete form of (7) reads

(8)

Using the definitions for the magnetization in (5) and for
the magnetic current in (6), we obtain the auxiliary equa-
tion

(9)

The update equations for the auxiliary variables and
for any can now be obtained by discretizing (9) and (6) as
follows:

(10)

Notice that in the limit with , the coupling
between and auxiliary variables and disappears,
and we obtain the usual update equation for the magnetic field

in free space, as required for consistency of the model. Also,
if for all and , implying that the auxiliary
variables are zero, leads to the usual update equations in free
space.

The quantity can be regarded as an averaged
relative permeability in the limit . To get the update
equation for the normal component of the magnetic field ,
which is inside the layer, we need to replace
with and set in (8) and (10) with appropriate changes
in the subscripts.

The derivation of the update equations for the electric-field
components in the case of a layer in free space is quite analo-
gous and is not shown here. However, in the case when metal is
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coated with the layer, we must account for the fact that the tan-
gential electric field decays to zero in the vicinity of the ideal
conductor. This situation is most conveniently described in a
1-D case. Suppose that there is an ideally conducting wall at

[see Fig. 1(b)] and let the coating on the wall have a
thickness . Let the electric field be polarized along the -axis.
The PEC wall implies that we have all the time. The
tangential magnetic field at a half-cell away from the PEC wall
can be updated as described above. However, the simple aver-
aging of the electric flux density in the vicinity of the PEC
wall is not a good approach.

To demonstrate how the PEC wall is accounted for, consider
deriving the update equation for the field component in
the immediate vicinity of the coating. Usually, the fields are
assumed to be piecewise linear across each FDTD cell. Hence,
we make a very natural assumption that the electric field behaves
linearly in the range with the slope chosen
so that a linear extrapolation to would yield a zero electric
field. Thus, we assume that

(11)

Next, we calculate the spatially averaged electric flux density
near the wall and use it to deduce the effective permittivity of
the coating in the limit . Integrating from
to , we obtain

(12)

This relation is utilized when updating the electric field near the
boundary. The consistency requirements are easy to check. If

, we have regardless of the layer thickness
and if , we obtain for . Notice that

the above derivation is only necessary if the layer thickness
. For smaller thicknesses, magnetic properties of the layer

are known to dominate the shape of the reflected waveform. This
fact can be easily seen from the Leontovich SIBC, which takes
the form

(13)

if the tangent function in the impedance is
approximated with its argument . Hence, we may
use if and the wavelength inside the
layer is not very small. In the following section, we will demon-
strate a pulse reflection from a wall coated with a layer having
a rather complicated frequency dependence of the material pa-
rameters.

It was observed from numerical experiments that the conduc-
tivity of the layer may be approximated by simple averaging
according to , where is the volume fraction of the
layer occupying the adjacent cells to . Thus, for a coating
of thickness and conductivity , we obtain

(14)

Introducing the electric polarization current and polarization
, we obtain the update equation for the electric field next

to the metal wall in the 1-D case

(15)

where the magnetic field in updated as described above.
In (15), we use (12) and (14) for the averaged permittivity
and conductivity. The variables and are updated
completely analogously to and in (10).

III. VALIDATION OF THE PROPOSED MODEL

A. Pulse Reflection From a Coated Ideal Conductor

We start with a problem of a TE-polarized pulse reflecting
from a metal wall coated with a dispersive layer. We consider a
fixed set of material parameters of the coating, and calculate the
numerical reflection coefficients and time-domain waveforms
varying the thickness of the coating. The numerical results are
then compared to the exact results.

1) Frequency-Domain Validation: Consider as an example a
layer of a material whose relative permittivity and permeability
are shown in Fig. 2. The parameters are of the Lorentz type. The
permittivity has one resonance, while the permeability has two
resonances. The parameters for the permeability are ,

10 rad s , 10 rad s ,
10 rad s , 10 rad s , ,

10 rad s, and 10 rad s. The permittivity
has parameters , 10 rad s ,

10 rad s, , and 10 rad s. The electrical
conductivity is taken to be zero. The goal here is to demonstrate
how the thickness of the coating affects the results. Hence, the
above parameters are kept fixed and the thickness of the layer is
varied in the numerical examples below.

The fields are recorded one cell away from the PEC boundary.
Notice that a confident comparison of the phase of the reflection
coefficient is only possible provided that the thickness of the
layer is close to since the electric field on the air–coating
interface is not available unless . For the magnitude
of the reflection coefficient, this is not critical in this 1-D case.
Only the magnitude of the reflection coefficient is shown for
thinner coatings.

The magnitude and phase of the reflection coefficient in the
case when mm are shown in Fig. 3. Rather
good agreement with the exact results is obtained. In Fig. 3(a),
the largest discrepancy occurs near the second resonance, corre-
sponding to the pole of the permittivity. The jump discontinuity
of the phase of the reflection coefficient in Fig. 3(b) occurs at
slightly smaller frequency than it should. Anyway, every res-
onance of the layer is qualitative very well and quantitatively
rather accurately modeled.



KÄRKKÄINEN: SUBCELL FDTD MODELING OF ELECTRICALLY THIN DISPERSIVE LAYERS 1777

(a)

(b)

Fig. 2. (a) Relative permittivity of the coating. (b) Relative permeability of the
coating.

(a)

(b)

Fig. 3. (a) Magnitude of the reflection coefficient. (b) Phase of the reflection
coefficient. The material parameters as a function of frequency are shown in
Fig. 2.

Next, we decrease the thickness of the coating, choosing
mm. The numerically calculated and exact mag-

nitude of the reflection coefficient as a function of frequency
are shown in Fig. 4(a). It is observed that the resonance asso-
ciated with the permittivity is not so strong, as in Fig. 3(a). In
Fig. 4(a), there is almost zero reflection at approximately 8 GHz,
the position of the second resonance of the permeability. Further
decreasing the thickness of the coating, we set

mm. The result is presented in Fig. 4(b). The resonance asso-
ciated to the permittivity near 4.8 GHz has almost been smeared
out, and the dips are not so deep, as in the case of a thicker
coating. These results show that the model works properly when
the thickness of the coating is varied and also verifies that the

(a)

(b)

Fig. 4. (a) Magnitude of the reflection coefficient. Layer thickness d = 1mm.
(b) Magnitude of the reflection coefficient. Layer thickness d = 0:2 mm.

magnetic properties of the coating dominate when the coating is
electrically very thin. Simulations for smaller damping factors
for permeability were made, and very good agreement was ob-
served even in that case. However, a more realistic case, where
the maximum real part of the permeability in the considered fre-
quency range is approximately four, was chosen as a numerical
example.

2) Time-Domain Validation: We show some time-domain
waveforms for the cases considered above. The incident elec-
tric field is a differentiated Gaussian pulse throughout the sim-
ulations. The exact reflected electric field on the interface as a
function of time may be calculated via inverse Fourier trans-
form. Thus, the integral

(16)

must be evaluated. The total field is obtained by replacing
with in the expression above. The surface impedance
model may be used to calculate the exact reflection coefficient.
In this problem, the PEC-backed coating can be modeled with
a surface impedance of the form

(17)

The exact reflection coefficient as a function of frequency is then
obtained from

(18)

where is the free-space wave impedance. The material pa-
rameters in Fig. 2 were used to calculate the results in Figs. 5
and 6. The agreement with the exact results is seen to also be
good in the time domain. It is seen that the oscillations of the re-
flected wave become smaller when the thickness of the coating
is decreased. This is natural since a PEC wall is obtained in the
limit .
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(a)

(b)

Fig. 5. (a) Reflected waveform on the boundary. d = 1:8 mm. (b) Total
waveform on the boundary. d = 1:8 mm.

(a)

(b)

Fig. 6. (a) Reflected waveform on the boundary. d = 1 mm. (b) Reflected
waveform on the boundary. d = 0:2 mm.

B. Cutoff Frequency of a Loaded Waveguide

First, consider a rectangular waveguide with the widths of the
walls equal to mm and mm. Suppose there is
a thin magnetic layer of thickness along the broader wall in
the middle of the waveguide. The permeability of the layer is
taken to be of the Lorentz type with a single pole pair. In the
lossless case, we may calculate the exact cutoff frequencies of
this waveguide. Contrary to the previous example, we keep the
thickness of the layer fixed and present a more detailed vali-
dation of the model by varying the material parameters and by
comparing with the exact results. For a single pole-pair loss-
less Lorentz layer, there are three parameters to vary, i.e., ,

, and .

(a)

(b)

Fig. 7. (a) Cross section of a rectangular waveguide with perfectly conducting
walls loaded with a dispersive magnetic layer of the Lorentz type. (b) Cross
section of a rectangular waveguide loaded with a dispersive dielectric layer of
the Lorentz type. The thickness of the layer is exaggerated here.

The problem geometries are shown in Fig. 7. Before numer-
ical examples, we present an analytical expression for the cutoff
frequencies of the waveguide loaded with a dispersive layer. For
the fundamental mode to be considered here, the field dis-
tributions over the small height of the waveguide remain almost
uniform for the components tangential to the layer. Hence, the
approximate expression for the propagation constant (the cross
section of the waveguide is uniform in the -direction) is appli-
cable [12] as follows:

(19)

The cutoff frequency of the mode is obtained by requiring
that and solving for . Notice that the approximate ana-
lytical result does not see the position of the layer. However, (19)
is very accurate for the mode, and reduces to the exact re-
sult for an empty waveguide if and . Rig-
orous derivation of the exact cutoff frequency is omitted here
because it would lead to extremely long and tedious transcen-
dental equations without significant increase of accuracy for the

mode. The cutoff frequency may be calculated in a 2-D
FDTD program using, for instance, a differentiated Gaussian
pulse point excitation inside the waveguide, and recording the
time-domain waveforms at an observation point. The observed
fields are transformed into the frequency domain and the peaks
in the spectrum correspond to the cutoff frequencies of the dif-
ferent modes propagating in the waveguide.

The thickness of the layer is equal to
mm. Hence, we have discretized the cross

section of the waveguide with a grid of 20 10 FDTD cells. We
first take the permeability to be independent of the frequency
and vary the relative permeability. As expected, the cutoff
frequency of the mode is seen to decrease with increasing
permeability. The agreement with the analytical results is rather
good: the maximum relative error in Fig. 8(a) is approximately
1%.

The results for varying are shown in Fig. 8(b).
Here, we fix and the resonant frequency of the layer is
chosen to be less than the cutoff frequency of the mode
of an empty waveguide. We have chosen 10 rad s.
The maximum relative error is less than 1%. In Fig. 9(a),

10 rad s, being larger than the cutoff of an empty waveguide
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(a)

(b)

Fig. 8. (a) Numerical and analytical cutoff frequencies of the TE mode
in the loaded waveguide versus � . (b) Numerical and analytical cutoff
frequencies of the TE mode in the loaded waveguide versus ! . The
resonant frequency of the layer is smaller than the cutoff frequency of the
TE mode of an empty waveguide.

(a)

(b)

Fig. 9. (a) Numerical and analytical cutoff frequencies of the TE mode
in the loaded waveguide versus ! . The resonant frequency of the layer is
larger than the cutoff frequency of the TE mode of an empty waveguide.
(b) Numerical and analytical cutoff frequencies of theTE mode in the loaded
waveguide versus ! .

( 10 rad s). The result is seen to be clearly
different from that in Fig. 8(b).

In Fig. 9(b), we vary the resonant frequency of the layer
around the cutoff frequency of the unloaded waveguide. We
set and 10 rad s. The cutoff frequency
of the loaded waveguide is seen to converge toward the cutoff
frequency of the empty waveguide when we move away from
the resonant frequency of the layer. More precisely, the cutoff
frequency of the loaded waveguide tends to the cutoff
frequency of the unloaded waveguide with increasing
resonant frequency of the layer. On the other hand, remains

(a)

(b)

Fig. 10. (a) Numerical and analytical cutoff frequencies of the TE mode
in the loaded waveguide versus � . (b) Numerical and analytical cutoff
frequencies of the TE mode in the loaded waveguide versus ! . The
resonant frequency of the layer is smaller than the cutoff frequency of the
TE mode in an empty waveguide.

(a)

(b)

Fig. 11. (a) Numerical and analytical cutoff frequencies of the TE mode
in the loaded waveguide versus ! . The resonant frequency of the layer is
larger than the cutoff frequency of the TE mode of an empty waveguide.
(b) Numerical and analytical cutoff frequencies of the TE mode the loaded
waveguide versus ! .

slightly above even if the resonant frequency of the layer
is arbitrarily small.

As regards the tangential components of the fields, the results
presented thus far confirm that the proposed new model cor-
rectly works. We present one more example, where the normal
components are also affected. We place a layer with a Lorentzian
permittivity (with a single-pole pair) in the middle of the wave-
guide and calculate the cutoff frequencies versus the parame-
ters of the layer. The shorter wall of the waveguide is now sup-
posed to be 9 mm, and the thickness of the layer is equal to
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1 mm. The layer thickness is increased from the previous ex-
ample to observe a significant change in the cutoff frequency. It
is seen from the analytical expression that the cutoff frequency
is more sensitive to magnetic layers than to dielectric layers.
The FDTD and analytical results are shown in Figs. 10 and 11.
In Fig. 10(a), , and is varied. In Fig. 10(b), ,

10 rad s and is changed. This is also the case
with the results in Fig. 11(a), except that 10 rad s.
Finally, in Fig. 11(b), , 10 rad s, and the
resonant frequency of the layer is varied. The maximum rel-
ative error of the cutoff frequency is at most 1% in all the cases
considered in this paper.

IV. CONCLUSIONS

A new model for treating electrically thin dispersive layers
and coatings in FDTD simulations was introduced. The model
is based on an appropriate averaging of the electric and magnetic
flux densities and on the use of auxiliary quantities like polar-
ization current and magnetization. The most important feature
of the model is its ability to accurately model dispersive layers
having multiple resonances of material parameters. The model
is applicable for electrically thin layers. A great advantage of the
model is that we do not have to consider the angle of incidence
of the incident waves because the local nature of the model ac-
counts for oblique incidence as well. With the proposed model,
the use of cumbersome SIBCs for dispersive layers having mul-
tiple pole pairs is avoided. The proposed model was numerically
verified with a couple of test problems by comparison with the
analytical results. The results given both in time and frequency
domains indicate rather good accuracy of the model. The model
was found to be suitable for the analysis of waveguides loaded
with a dispersive layer.

REFERENCES

[1] C. F. Lee, R. T. Shin, and J. A. Kong, “Time domain modeling of
impedance boundary conditions,” IEEE Trans. Microwave Theory
Tech., vol. 40, pp. 1847–1850, Sept. 1992.

[2] B. Z. Wang, “Time-domain modeling of the impedance boundary
condition for an oblique incident parallel-polarization plane wave,”
Microwave Opt. Technol. Lett., vol. 7, pp. 19–22, 1994.

[3] , “Time-domain modeling of the impedance boundary condition for
an oblique incident perpendicular-polarization plane wave,” Microwave
Opt. Technol. Lett., vol. 7, pp. 355–359, 1994.

[4] C. W. Penney, R. J. Luebbers, and J. W. Schuster, “Scattering from
coated targets using a frequency-dependent, surface impedance
boundary condition in FDTD,” IEEE Trans. Antennas Propagat., vol.
44, pp. 434–443, Apr. 1996.

[5] P. A. Tirkas and K. R. Demarest, “Modeling of thin dielectric structures
using the finite-difference time-domain method,” IEEE Trans. Antennas
Propagat., vol. 39, pp. 1338–1344, Sept. 1991.

[6] J. G. Maloney and G. S. Smith, “The efficient modeling of thin mate-
rial sheets in the finite-difference time-domain (FDTD) method,” IEEE
Trans. Antennas Propagat., vol. 40, pp. 323–330, Mar. 1992.

[7] R. J. Luebbers and K. Kunz, “FDTD modeling of thin impedance
sheets,” IEEE Trans. Antennas Propagat., vol. 40, pp. 349–351, Mar.
1992.

[8] C. J. Railton and J. P. McGeehan, “An analysis of microstrip with rectan-
gular and trapezoidal conductor cross sections,” IEEE Trans. Antennas
Propagat., vol. 38, pp. 1017–1022, Aug. 1990.

[9] L.-K. Wu and L.-T. Han, “Implementation and application of resistive
sheet boundary condition in the finite-difference time-domain method,”
IEEE Trans. Antennas Propagat., vol. 40, pp. 628–633, June 1992.

[10] J. G. Maloney and G. S. Smith, “A comparison of methods for mod-
eling electrically thin dielectric and conducting sheets in the finite-dif-
ference time-domain method,” IEEE Trans. Antennas Propagat., vol. 41,
pp. 690–694, May 1993.

[11] J. L. Young, “Propagation in linear dispersive media: Finite-difference
time-domain methodologies,” IEEE Trans. Antennas Propagat., vol. 43,
pp. 422–426, Apr. 1995.

[12] S. A. Tretyakov, A. S. Cherepanov, and M. I. Oksanen, “Averaging
method for analysing waveguides with anisotropic filling,” Radio Sci.,
vol. 26, no. 2, pp. 523–528, 1991.

Mikko K. Kärkkäinen was born in Iisalmi, Finland,
on July 22, 1976. He received the Master of Science
degree in mathematics from the Helsinki University
of Technology, Helsinki, Finland, in 2000, and is
currently working toward the doctoral degree at the
Helsinki University of Technology.

He is currently with the Radio Laboratory,
Helsinki University of Technology. His main sci-
entific interest is the development of new numerical
models using the FDTD method.

Mr. Kärkkäinen is a member of the Finnish Grad-
uate School of Electronics, Telecommunications, and Automation (GETA).


	MTT025
	Return to Contents


